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Introduction

@ We have seen that the d;-covering numbers are crucial:
P™{some fin F has |erp(f) — er.(f)| > €}
< 4N (e/16, F,2m) exp(—e*m/32)

@ As in chapter 12, we present two bounds, one in terms of the fat-shattering
dimension, and one in terms of the pseudo-dimension.
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Bounding with the Fat-Shattering Dimension

A Bound on the d;-packing numbers in terms of the fat-shattering dimension

Theorem 18.1.

Suppose that F' is a set of real functions from a domain X to the bounded interval
[0,1] and that 0 < € < 1. Then

M (e, F,m) < 2p3(Mog2 y1+1)

where b = |4/€] and, with d = fatp(e/8) > 1,

=5 (7)r
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Bounding with the Fat-Shattering Dimension

A Bound on the d;-covering numbers in terms of the fat-shattering dimension

Theorem 18.2.

Let F be a set of real functions from a domain X to the bounded interval [0, 1]. Let
0 < e <1andletd = fatp(e/8). Then form > d > 1,

4 3dlogy (16em/(de))
Nl(e,F,m)<2( ) .

€

@ It can be proved by Theorem 18.1 and the relationship between covering and
packing numbers.
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Bounding with the Fat-Shattering Dimension

Proof of Theorem 18.1.
Qa(F) ={Qa(f) : f € F'} where Qu(f)(z) = alf(z)/a].

@ Fixem,0<a<e

@ Mi(e, F,m) < Mi(e — a,Qa(F),m).
o

o

fatg,, () (€) < fatp(e — a/2) for a < 2e.

Lemma 18.3 :
M1(36/4, Qe/4(F)7 m) < op3(Moga y1+1) \with d = fatQ€/4(F)(6/4).

This implies Theorem 18.1.
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Bounding with the Pseudo-Dimension

@ The fat-shattering dimension is always no more than the pseudo-dimension.

@ If a function class F' has finite pseudo-dimension, then Theorem 18.2 trivially
yields an upper bound on covering numbers in terms of the pseudo-dimension.

@ However, for classes of finite pseudo-dimension, a quite different bound can be
obtained.

@ We define the pseudo-metric dr, (py on the function class F' by

di, ) (Fr9) = E(| () / \F () — g(a)|dP.

Theorem 18.5

Let F' be a nonempty set of real functions mapping from a domain X into the real
interval [0, 1], and suppose F’ has finite pseudo-dimension d. Then,

M(e, Fdp, (p)) < 2<*10 (8:))

for any probability distribution P on X, and forall 0 < e < 1.

|
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Bounding with the Pseudo-Dimension

Mi(e, F,m) = max{M(e, Fl;,d1) 1z € X"}
= max{M(e, F,dp,) : 2 € X"}

d
2
<2 (f log (§) )
€ €
where P, is the distribution that is uniform on the entries of x and vanishes

elsewhere.

@ Hence, M (e, F,m) < 2(% log (%))d'

Theorem 18.4.

Let F' be a nonempty set of real functions mapping from a domain X into the real
interval [0, 1] and suppose that F' has finite pseudo-dimension d. Then,

d
Ni(e, F,m) < Mi(e, F,m) < e(d + 1)(%)

for all e > 0.
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Comparing the Different Approaches

Bounding with the Fat-Shattering Dimension
@ Theorem 12.8.

/ fatp (e/4) logy (m/(efatp (e/4)))
Ni(e, F,m) < Noo(e, Fym) < (—m) . : g .
€
@ Theorem 18.2.
1\ fatz (e/8) logg (m/(efatp(e/8)))
Ni(e, Fym) < (f) " ’ "

€

Bounding with the Pseudo-Dimension
@ Theorem 12.2.

Nile, Fym) < Noole, Fym) < (1)

@ Theorem 18.4.

Nife, Fom) < (1)

€



Chapter 19: The Sample Complexity of Learning Real Function Classes

© Chapter 19: The Sample Complexity of Learning Real Function
Classes



Chapter 19: The Sample Complexity of Learning Real Function Classes
Introduction

@ Approximate-SEM algorithm : a function from US5_; Z™ x RT to F' s.t.

érz(A(z,€)) < firelfrérz(f) +e

@ In chapter 16 : if a function class is totally bounded w.r.t. the L, metric, then
it is learnable by an algorithm derived from any approximate-SEM algorithm.

@ In this chapter : if F" has finite fat-shattering dimension, any approximate-SEM
algorithm can be used to construct a learning algorithm for F.

@ We also give lower bounds on the sample complexity of any learning
algorithm, in terms of the fat-shattering dimension of the function class.

@ A function class is learnable iff if it has finite fat-shattering dimension.
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Classes with Finite Fat-Shattering Dimension

Theorem 19.1.

Suppose that F' is a class of functions mapping from a domain X into the real
interval [0, 1], and suppose also that F has finite fat-shattering dimension.
Let A be any approximate-SEM algorithm for F and define, for z € Z™,
L(z) = A(z,€0/6), where g = 16/y/m.

Then, L is learning algorithm for F°, and its sample complexity satisfies

mr(e,0) < mo(e, d) = % (18fatp(e/256) log® (128) + log (%))

€

forall €,6 > 0.

We say that the learning algorhtim L described in Theorem 19.1 is based on the
approximate-SEM algorithm .A.
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Classes with Finite Pseudo-Dimension

Theorem 19.2.

Suppose that F' is a class of functions mapping from a domain X into the interval
[0, 1] of real numbers, and that F" has finite pseudo-dimension.

Let A be any approximate-SEM algorithm for £ and let L be as described in the
statement of Theorem 19.1.

Then, L is a learning algorithm for F' and its sample complexity is bounded as
follows:

€

mi (e, 8) < mo(e,6) = % (2Pdim(F) log (34) g (%))

forall0 < ¢,d < 1.
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Results for Neural Networks

Corollary 19.3.

Suppose that a feed-forward network N has W weights and k& computation units
arranged in L layers.

Suppose that each computation unit has a fixed piecewise-polynomial activation
function with p pieces and degree no more than [.

Let F' be the class of functions computed by V.

Then any approximate-SEM algorithm for F' can be used to define a learning
algorithm for F’, and for fixed p and [, the sample complexity of this learning
algorithm is

€

o (orae +wrres () s (1)

@ By Theorem 8.8, Theorem 14.1 and Theorem 19.2.
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Results for Neural Networks

Corollary 19.4

Suppose that b, L > 0 and s : R — [—b, ] satisfies |s(a1) — s(a2)| < L|ar — az|
for all a1, a2 € R.
ForV > 1and B > 1, let

N N
F = {Zwifi+w03N€N,fi EF1,Z|wi| SV}

i=1 i=0
where
Flz{m»—><2vixi+v0) v ER,x € [— Z\vl|<V}
i=1

Then, any approximate-SEM algorithm can be used to define a learning algorithm L
for F' that has sample complexity satisfying

mL(e,5):O(62<VZ logn—Hog(;)))
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Lower Bounds

Theorem 19.5.

Suppose that F' is a class of functions mapping from X to [0, 1]. Then for B > 2,
0<e<land0 < 6 < 1/100, any learning algorithm L for F has sample
complexity satisfying

fatp(e/a) — 1

>
mL(e,é,B) = 160 5

forany 0 < o < 1/4.

@ Finiteness of the fat-shattering dimension of a function class is a necessary and
sufficient condition for the existence of a learning algorithm for the class.

@ This result shows that

mle, 8, B) = Q(% + fatF(4e)).
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Remarks

It is easy to extend Theorem 19.1 and 19.2 to the case where the bound B > 1.

@ Theorem 19.1.

mate 7)< 207 (1w () o (222) s (7))

@ Theorem 19.2.

mi(e,8, B) < 125834 (QPd m(F) log (?) +log (?))
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Restricted Model

@ We can define a restricted version of the learning framework for real
prediction, in which the labelled examples presented to the learning algorithm
are of the form (z, f(z)) for some f € F.

@ The following example describes the extreme case in which a single labelled
example (z, f(z)) serves to uniquely identify the function f.

Example 19.6

For a positive integer d, let So, ..., Sq—1 be disjoint subsets of X with U;S; =
Define the class of [0, 1]-valued functions

|
>< |

Fd_{fbo ,,,,, b ZbiE{O,l},iZO,...,d—l},

where

d—
foo,..., bd,l(x)zgz x)bj + = Zb R

Clearly, for any v < 1/4, fatg, () = d. Hence, F' = Ug2 | Fy has fatg(y) = oo for
~v < 1/4, butany f in F can be identified from a single example (z, f(z)).
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Restricted Model

@ There are less restricted models that avoid these pathological cases.

@ The labels are noisy versions of the function values :
labelled examples are of the form (x, f(z) + 7).
@ The labels are quantized versions of the function values.

@ Typically, the fat-shattering dimension is the appropriate measure of
complexity in such cases.

@ We shall consider one such model at the end of the next chapter.
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Relative Uniform Convergence Results

Theorem 19.7

Suppose that F is a set of [0, 1]-valued functions defined on a set X and that P is a
probability distribution on Z = X X [0, 1]. For o, € > 0 and m a positive integer, we
have

P™{3f € F:erp(f) > (1 + a)ér.(f) + €}

€ —2mae
< 4N (74(24—04)’}7’ 2m> exp ((24—0()2)'

Theorem 19.8
For F' and P as in Theorem 19.7, v > 0and 0 < 8 < 1,

m erp(f) —ér=(f)]
P {erF'erp(f)+érz(f)+z/ >ﬂ}

< 4N, (%,F, Qm) exp (—m;/62>.

| A

A
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