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Introduction

We have seen that the d1-covering numbers are crucial:

Pm{some f in F has |erP (f)− êrz(f)| ≥ ε}

≤ 4N1(ε/16, F, 2m) exp(−ε2m/32)

As in chapter 12, we present two bounds, one in terms of the fat-shattering
dimension, and one in terms of the pseudo-dimension.
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Bounding with the Fat-Shattering Dimension

A Bound on the d1-packing numbers in terms of the fat-shattering dimension

Theorem 18.1.

Suppose that F is a set of real functions from a domain X to the bounded interval
[0, 1] and that 0 < ε ≤ 1. Then

M1(ε, F,m) < 2b3(dlog2 ye+1),

where b = b4/εc and, with d = fatF (ε/8) ≥ 1,

y =
d∑
i=1

(
m

i

)
bi.
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Bounding with the Fat-Shattering Dimension

A Bound on the d1-covering numbers in terms of the fat-shattering dimension

Theorem 18.2.

Let F be a set of real functions from a domain X to the bounded interval [0, 1]. Let
0 < ε ≤ 1 and let d = fatF (ε/8). Then for m ≥ d ≥ 1,

N1(ε, F,m) < 2

(
4

ε

)3d log2(16em/(dε))

.

It can be proved by Theorem 18.1 and the relationship between covering and
packing numbers.
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Bounding with the Fat-Shattering Dimension

Proof of Theorem 18.1.

Qα(F ) = {Qα(f) : f ∈ F} where Qα(f)(x) = αbf(x)/αc.
Fix ε,m, 0 < α < ε.

M1(ε, F,m) ≤M1(ε− α,Qα(F ),m).

fatQα(F )(ε) ≤ fatF (ε− α/2) for α < 2ε.

Lemma 18.3 :
M1(3ε/4, Qε/4(F ),m) ≤ 2b3(dlog2 ye+1) with d = fatQε/4(F )(ε/4).

This implies Theorem 18.1.
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Bounding with the Pseudo-Dimension

The fat-shattering dimension is always no more than the pseudo-dimension.
If a function class F has finite pseudo-dimension, then Theorem 18.2 trivially
yields an upper bound on covering numbers in terms of the pseudo-dimension.
However, for classes of finite pseudo-dimension, a quite different bound can be
obtained.
We define the pseudo-metric dL1(P ) on the function class F by

dL1(P )(f, g) = E(|f(x)− g(x)|) =

∫
|f(x)− g(x)|dP.

Theorem 18.5.

Let F be a nonempty set of real functions mapping from a domain X into the real
interval [0, 1], and suppose F has finite pseudo-dimension d. Then,

M(ε, F, dL1(P )) < 2

(
2e

ε
log
(8e

ε

))d
for any probability distribution P on X , and for all 0 < ε ≤ 1.
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Bounding with the Pseudo-Dimension

M1(ε, F,m) = max{M(ε, F|x, d1) : x ∈ Xm}
= max{M(ε, F, dPx) : x ∈ Xm}

< 2

(
2e

ε
log
(8e

ε

))d
where Px is the distribution that is uniform on the entries of x and vanishes
elsewhere.

Hence,M1(ε, F,m) < 2
(

2e
ε

log
(
8e
ε

))d
.

Theorem 18.4.

Let F be a nonempty set of real functions mapping from a domain X into the real
interval [0, 1] and suppose that F has finite pseudo-dimension d. Then,

N1(ε, F,m) ≤M1(ε, F,m) ≤ e(d+ 1)

(
2e

ε

)d
for all ε > 0.
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Comparing the Different Approaches

Bounding with the Fat-Shattering Dimension

Theorem 12.8.

N1(ε, F,m) ≤ N∞(ε, F,m) ≤
(√m

ε

)fatF (ε/4) log2(m/(εfatF (ε/4)))

.

Theorem 18.2.

N1(ε, F,m) ≤
(1

ε

)fatF (ε/8) log2(m/(εfatF (ε/8)))

Bounding with the Pseudo-Dimension

Theorem 12.2.

N1(ε, F,m) ≤ N∞(ε, F,m) ≤
(m
ε

)Pdim(F )

Theorem 18.4.

N1(ε, F,m) ≤
(1

ε

)Pdim(F )
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Introduction

Approximate-SEM algorithm : a function from ∪∞m=1Z
m × R+ to F s.t.

êrz(A(z, ε)) < inf
f∈F

êrz(f) + ε

In chapter 16 : if a function class is totally bounded w.r.t. the L∞ metric, then
it is learnable by an algorithm derived from any approximate-SEM algorithm.

In this chapter : if F has finite fat-shattering dimension, any approximate-SEM
algorithm can be used to construct a learning algorithm for F .

We also give lower bounds on the sample complexity of any learning
algorithm, in terms of the fat-shattering dimension of the function class.

A function class is learnable iff if it has finite fat-shattering dimension.
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Classes with Finite Fat-Shattering Dimension

Theorem 19.1.

Suppose that F is a class of functions mapping from a domain X into the real
interval [0, 1], and suppose also that F has finite fat-shattering dimension.
Let A be any approximate-SEM algorithm for F and define, for z ∈ Zm,
L(z) = A(z, ε0/6), where ε0 = 16/

√
m.

Then, L is learning algorithm for F , and its sample complexity satisfies

mL(ε, δ) ≤ m0(ε, δ) =
256

ε2

(
18fatF (ε/256) log2

(128

ε

)
+ log

(16

δ

))
for all ε, δ > 0.

We say that the learning algorhtim L described in Theorem 19.1 is based on the
approximate-SEM algorithm A.
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Classes with Finite Pseudo-Dimension

Theorem 19.2.

Suppose that F is a class of functions mapping from a domain X into the interval
[0, 1] of real numbers, and that F has finite pseudo-dimension.
Let A be any approximate-SEM algorithm for F and let L be as described in the
statement of Theorem 19.1.
Then, L is a learning algorithm for F and its sample complexity is bounded as
follows:

mL(ε, δ) ≤ m0(ε, δ) =
128

ε2

(
2Pdim(F ) log

(34

ε

)
+ log

(16

δ

))
for all 0 < ε, δ < 1.
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Results for Neural Networks

Corollary 19.3.

Suppose that a feed-forward network N has W weights and k computation units
arranged in L layers.
Suppose that each computation unit has a fixed piecewise-polynomial activation
function with p pieces and degree no more than l.
Let F be the class of functions computed by N .
Then any approximate-SEM algorithm for F can be used to define a learning
algorithm for F , and for fixed p and l, the sample complexity of this learning
algorithm is

O

(
1

ε2

(
(WL logW +WL2) log

(1

ε

)
+ log

(1

δ

)))

By Theorem 8.8, Theorem 14.1 and Theorem 19.2.
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Results for Neural Networks

Corollary 19.4.

Suppose that b, L > 0 and s : R→ [−b, b] satisfies |s(α1)− s(α2)| ≤ L|α1 − α2|
for all α1, α2 ∈ R.
For V ≥ 1 and B ≥ 1, let

F =

{ N∑
i=1

wifi + w0 : N ∈ N, fi ∈ F1,

N∑
i=0

|wi| ≤ V
}

where

F1 =

{
x 7→

( n∑
i=1

vixi + v0

)
: vi ∈ R, x ∈ [−B,B]n,

n∑
i=0

|vi| ≤ V
}

Then, any approximate-SEM algorithm can be used to define a learning algorithm L
for F that has sample complexity satisfying

mL(ε, δ) = O

(
1

ε2

(
V 6B2

ε4
logn+ log

(1

δ

)))
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Lower Bounds

Theorem 19.5.

Suppose that F is a class of functions mapping from X to [0, 1]. Then for B ≥ 2,
0 < ε < 1 and 0 < δ < 1/100, any learning algorithm L for F has sample
complexity satisfying

mL(ε, δ, B) ≥ fatF (ε/α)− 1

16α
,

for any 0 < α < 1/4.

Finiteness of the fat-shattering dimension of a function class is a necessary and
sufficient condition for the existence of a learning algorithm for the class.

This result shows that

m(ε, δ, B) = Ω

(
1

ε
+ fatF (4ε)

)
.
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Remarks

It is easy to extend Theorem 19.1 and 19.2 to the case where the bound B ≥ 1.

Theorem 19.1.

mL(ε, δ, B) ≤ 256B4

ε2

(
18fatF

( ε

256B

)
log2

(128B

ε

)
+ log

(16

δ

))
.

Theorem 19.2.

mL(ε, δ, B) ≤ 128B4

ε2

(
2Pdim(F ) log

(37B

ε

)
+ log

(16

δ

))
.
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Restricted Model

We can define a restricted version of the learning framework for real
prediction, in which the labelled examples presented to the learning algorithm
are of the form (x, f(x)) for some f ∈ F .
The following example describes the extreme case in which a single labelled
example (x, f(x)) serves to uniquely identify the function f .

Example 19.6

For a positive integer d, let S0, ..., Sd−1 be disjoint subsets of X with ∪jSj = X .
Define the class of [0, 1]-valued functions

Fd = {fb0,...,bd−1 : bi ∈ {0, 1}, i = 0, ..., d− 1},

where

fb0,...,bd−1(x) =
3

4

d−1∑
j=0

1Sj (x)bj +
1

8

d−1∑
k=0

bk2−k.

Clearly, for any γ ≤ 1/4, fatFd(γ) = d. Hence, F = ∪∞d=1Fd has fatF (γ) =∞ for
γ ≤ 1/4, but any f in F can be identified from a single example (x, f(x)).
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Restricted Model

There are less restricted models that avoid these pathological cases.

The labels are noisy versions of the function values :
labelled examples are of the form (x, f(x) + η).
The labels are quantized versions of the function values.

Typically, the fat-shattering dimension is the appropriate measure of
complexity in such cases.

We shall consider one such model at the end of the next chapter.
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Relative Uniform Convergence Results

Theorem 19.7

Suppose that F is a set of [0, 1]-valued functions defined on a set X and that P is a
probability distribution on Z = X × [0, 1]. For α, ε > 0 and m a positive integer, we
have

Pm{∃f ∈ F :erP (f) > (1 + α)êrz(f) + ε}

≤ 4N1

(
ε

4(2 + α)
, F, 2m

)
exp

(
−2mαε

(2 + α)2

)
.

Theorem 19.8

For F and P as in Theorem 19.7, ν > 0 and 0 < β < 1,

Pm
{
∃f ∈ F :

|erP (f)− êrz(f)|
erP (f) + êrz(f) + ν

> β

}
≤ 4N1

(
βν

8
, F, 2m

)
exp

(
−mνβ2

8

)
.
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